276 research outputs found

    Toxic risk of stereotactic body radiotherapy and concurrent helical tomotherapy followed by erlotinib for non-small-cell lung cancer treatment - case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stereotactic body radiation therapy (SBRT) applied by helical tomotherapy (HT) is feasible for lung cancer in clinical. Using SBRT concurrently with erlotinib for non-small cell lung cancer (NSCLC) is not reported previously.</p> <p>Case Presentation</p> <p>A 77-year-old man with stage III NSCLC, received erlotinib 150 mg/day, combined with image-guided SBRT via HT. A total tumor dose of 54 Gy/9 fractions was delivered to the tumor bed. The tumor responded dramatically and the combined regimen was well tolerated. After concurrent erlotinib-SBRT, erlotinib was continued as maintenance therapy. The patient developed dyspnea three months after the combined therapy and radiation pneumonitis with interstitial lung disease was suspected.</p> <p>Conclusions</p> <p>Combination SBRT, HT, and erlotinib therapy provided effective anti-tumor results. Nonetheless, the potential risks of enhanced adverse effects between radiation and erlotinib should be monitored closely, especially when SBRT is part of the regimen.</p

    Imaging in the time of NFD/NSF: do we have to change our routines concerning renal insufficiency?

    Get PDF
    To date there are potential chronology-based but not conclusive reasons to believe that at least some of the gadolinium complexes play a causative role in the pathophysiology of nephrogenic systemic fibrosis (NSF) or nephrogenic fibrosing dermopathy (NFD). Still, the exact pathogenesis and the risk for patients is unclear beside the obvious connection to moderate to severe renal insufficiency. So far, MR imaging with Gd-enhancement was regarded as the safest imaging modality in these patients—the recent development creates tremendous uncertainty in the MR-community. Nevertheless, one should remember that, despite the over 200 cases of NSF and about 100 with proven involvement of Gd3+, the vast majority of over 200 million patients exposed to gadolinium since the 1980s have tolerated these agents well. Importantly, NSF is a rare disease and does not appear to occur in patients without renal impairment. Many patients and researchers have undergone MR investigations with Gd exposure in the past. For those, it is essential to know about the safety of the agents at normal renal function. We can hope that pharmacoepidemiological and preclinical studies will allow us to better understand the pathophysiology and role of the various MR contrast agents in the near future

    Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles

    Get PDF
    Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents

    Skeletal Site-Related Variation in Human Trabecular Bone Transcriptome and Signaling

    Get PDF
    BACKGROUND: The skeletal site-specific influence of multiple genes on bone morphology is recognised, but the question as to how these influences may be exerted at the molecular and cellular level has not been explored. METHODOLOGY: To address this question, we have compared global gene expression profiles of human trabecular bone from two different skeletal sites that experience vastly different degrees of mechanical loading, namely biopsies from iliac crest and lumbar spinal lamina. PRINCIPAL FINDINGS: In the lumbar spine, compared to the iliac crest, the majority of the differentially expressed genes showed significantly increased levels of expression; 3406 transcripts were up- whilst 838 were down-regulated. Interestingly, all gene transcripts that have been recently demonstrated to be markers of osteocyte, as well as osteoblast and osteoclast-related genes, were markedly up-regulated in the spine. The transcriptome data is consistent with osteocyte numbers being almost identical at the two anatomical sites, but suggesting a relatively low osteocyte functional activity in the iliac crest. Similarly, osteoblast and osteoclast expression data suggested similar numbers of the cells, but presented with higher activity in the spine than iliac crest. This analysis has also led to the identification of expression of a number of transcripts, previously known and novel, which to our knowledge have never earlier been associated with bone growth and remodelling. CONCLUSIONS AND SIGNIFICANCE: This study provides molecular evidence explaining anatomical and micro-architectural site-related changes in bone cell function, which is predominantly attributable to alteration in cell transcriptional activity. A number of novel signaling molecules in critical pathways, which have been hitherto not known to be expressed in bone cells of mature vertebrates, were identified

    Heritability and major gene effects on left ventricular mass in the Chinese population: a family study

    Get PDF
    BACKGROUND: Genetic components controlling for echocardiographically determined left ventricular (LV) mass are still unclear in the Chinese population. METHODS: We conducted a family study from the Chin-San community, Taiwan, and a total of 368 families, 1145 subjects, were recruited to undergo echocardiography to measure LV mass. Commingling analysis, familial correlation, and complex segregation analysis were applied to detect component distributions and the mode of inheritance. RESULTS: The two-component distribution model was the best-fitting model to describe the distribution of LV mass. The highest familial correlation coefficients were mother-son (0.379, P < .0001) and father-son (0.356, P < .0001). Genetic heritability (h(2)) of LV mass was estimated as 0.268 ± 0.061 (P < .0001); it decreased to 0.153 ± 0.052 (P = .0009) after systolic blood pressure adjustment. Major gene effects with polygenic components were the best-fitting model to explain the inheritance mode of LV mass. The estimated allele frequency of the gene was 0.089. CONCLUSION: There were significant familial correlations, heritability and a major gene effect on LV mass in the population-based families

    Genomic screen for loci associated with tobacco usage in Mission Indians

    Get PDF
    BACKGROUND: The prevalence of tobacco usage in Native American adults and adolescents is higher than any other racial or ethnic group, yet biological risk and protective factors underlying tobacco use in this ethnic group remain unknown. A genome scan for loci associated with tobacco use phenotypes was performed with data collected from a community sample of Mission Indians residing in Southwest California. METHODS: A structured diagnostic interview was used to define two tobacco use phenotypes: 1) any regular tobacco usage (smoked daily for one month or more) and 2) persistent tobacco usage (smoked at least 10 cigarettes a day for more than one year). Heritability was determined and a linkage analysis was performed, using genotypes for a panel 791 microsatellite polymorphisms, for the two phenotypes using variance component methods implemented in SOLAR. RESULTS: Analyses of multipoint variance component LOD scores for the two tobacco use phenotypes revealed two scores that exceeded 2.0 for the regular use phenotype: one on chromosomes 6 and one on 8. Four other loci on chromosomes 1,7,13, and 22 were found with LOD scores between 1.0 and 1.5. Two loci of interest were found on chromosomes 1 and 4 for the persistent use phenotype with LOD scores between 1.3–1.5. Bivariate linkage analysis was conducted at the site on chromosome 4 for persistent tobacco use and an alcohol drinking severity phenotype previously identified at this site. The maximum LOD score for the bivariate analysis for the region was 3.4, however, there was insufficient power to exclude coincident linkage. CONCLUSION: While not providing evidence for linkage to specific chromosomal regions these results identify regions of interest in the genome in this Mission Indian population, for tobacco usage, some of which were identified in previous genome scans of non-native populations. Additionally, these data lend support for the hypothesis that cigarette smoking, alcohol dependence and other consumptive behaviors may share some common risk and/or protective factors in this Mission Indian population
    corecore